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N.Abstract

In Part II of this paper, the approximation theory developed in Part I
4 is used to determine the piecewise polynomial approx~mability of
solutions of elliptic problems on polygonal domains in R. and polyhedra
in Rj. From these estimates, convergence orders for the p-version of the
finite element method applied to such problems are readily obtained. The
critical issue is the approximation of the singularities which occur at the
non-smooth parts of the domain boundaries It is seen that the estimates of
FIl]-involving the we it: 3uboy =paces ZI are well-suited for
treating such singular functions, yielding directly the optimal approximation
degree, up to an arbitrarily small e.

-'Numerical results for two problems from two-dimensional linear elasticity
are also presented. The computations show that the predicted order of
convergence is achieved even for low values of p. Moreover, in contrast to
the usual h-version of the finite element method, the point at which the
p-version enters the asymptotic range does not depend on problem parameters
such as the Poisson ratio.
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1. Introouction

In this paper, the approximation theory developed in [11) for the

p-version of the finite element method is applied to elliptic problems in

polygonal and polyhedral domains. Assuming that the p-version (see e.g. [6])

is used to compute an approximate piecewise polynominal solution to some

elliptic problem, the question at issue is the rate at which the approximate

solution will converge to the true solution in the appropriate energy space as

the polynomial degree p is increased. It is well-known that if a coercivity

or "inf-sup" condition [2,10) exists for the given elliptic operator, then

this question reduces to a purely approximation-theoretic problem of the kind

treated in [11]. The purpose of the present paper is to show how the results

of [il) may be used to determine the approximability of solutions of some

model problems in the usual Sobolev spaces by piecewise polynomials satisfying

appropriate boundary and conformality conditions.

As with any approximation result, the degree of approximation for the

p-version is determined by the regularity of the function being approximated.

The regularity of solutions of elliptic problems on smooth domains is

classical (1,19), unfortunately few problems of practical interest fall into

this category. For elliptic problems on non-smooth domains such as polygons

and polyhedra, one must turn to the regularity theory developed e.g. in

(12-18). Essentially, these results show that solutions on such domains may

be decomposed into the sum of smooth functions and functions which possess

singular derivatives at the corners (and edges in R3) of the domain. It

suffices therefore to consider the approximability of these singular

functions, whose form can usually be given very explicitly. It has been

previously noted [6) that, unlike the h-version estimates, the approximation

results for such singular functions as obtained from estimates involviig the

usual unweighted Sobolev spaces Hs are not optimal for the p-version. As



will be seen in the following sections, however, the singular character of

these functions is well-distinguished by the weighted Sobolev spaces Zs

introduced in [i], and optimal results are obtained by the estimates of

[11). This is clearly due to the close relationship between the weighted

spaces Z and polynomial approximation indicated in [11).

In Section 2 the notation and main approximation results of [11) are

reviewed. Section 3 addresses the approximation of the solution of a model

elliptic boundary-value problem in a polygon. This two-dimensional result has

been previously obtained in [63 by a different method not involving weighted

spaces. The advantage of the current approach lies in the fact that more

general kinds of singularities can be analyzed using the weighted spaces

z s than with the techniques of [6]. In particular, one may allow a

continuum of singularities along part of the bounoary of the domain. Tnis

situation occurs in three-dimensional problems along edges of polyhedral

domains as described in Section 4, where some new approximation results are

obtained. In Section 5, some numerical results are presented for a sample of

problems in two-dimensional linear elasticity. These were computed by the

research program COMET-X [7) developed by the Center for Computational

Mechanics at Washington University in St. Louis.

2. Review of the Approximation Results

The following is a summary of the notation and main results of [11].

For each positive integer n, let In = {x (x1, ... , xn): -1 < xi <

1 <i < n). For each non-negative real number s such that s 1 - + an integer,

define

zS(In ) = {u: lull s(i

where, if s = k an integer, then

2



2- -n 22 i /2,
RU N lul dx + T f I' 1  (1 X ) dx

xi=k  (1 -x

and if s = k + B with k an integer and 0 < 8 <1 (B 1 1/2), then

:- l Ijln) \ Zk(In )

n f I t 2 ) s / 2  
aku

+ zL k (x 1 ... xi-1, t, xi+,, ... , xn)

z1

It - TI-1-20 dt dT dx1... dxi 1 dxi+ 1 .. .dxn ) 1/ 2.

Let it be a domain in Rn such that there exists a triangulation A of

1 into open n-simplices Ili i=l, ... , M. Let a , v 1, ... , N,

oenote the vertices of A. Since it is convenient to be able to refer to the

vertices of a particular simplex i, for i=l, ... , M let ai , j , 1 <

< n + 1, denote the vertices of "i" Hence, if a vertex aV of A is

also a vertex of "iv then oIv = ai, j for some j. Let SA :

I(1,j): I <i <M, 1 <j <n + 11.

Consider a simplex "i c A and one of its vertices oi' j -

Letting el, ..., en be the vectors based at oi, j and terminating at

the other n vertices of i, define in Rn the parallelepiped

n
Q . x c RnP: x = c;,, + Z tm em, 0 <tm < 1

* 1,3 =, m= mm

Clearly, Ri c fi,j for all j=l, ... , n+l. For each (i,j) c SA choose an

affine mapping T in Rn which maps Qi~* onto In and a onto the point

(1, ... , 1).

- C * . . .t L, * - * , '-Z - " .-: .-"" .. ;"/ ' ; .- -- " . v .. .: . -. :.;*... ,



Let (r}N be a smooth partition of unity on f such that for each v=-l,4Let

... , N, supp n contains the vertex aV and supp nV intersects only those
closed simplices Q i which have a as a vertex. For any u c L2( W) and (i,j)

C S a, define in ij

- V
= un in where v is such that . =

tj 0 in 11. i.l/Q

By the assumptions on %, one observes that u i j = u in a neighborhood

of oi,j and ui,j -0 outside of a neighborhood G of ai,j such that

, . ,G n U i = j/i

For each real s > 0 such that s A + an integer, let

zS(a;&) = (u : U, < }

where

I 1= I T-.0 1 i2 )1/2
z S (9A )  (it) 3SA i,3 zSIn "

For each non-negative integer p, let Pp (Qi), 1 < i _< M, denote the

space of all polynomials on Qi of degree at most p, and let

P (pi.A) = {u : u I C P p(i), 1 <i <M

For all non-negative integers L and p, set

z s (iq;A) = zS (fA) n C TO

P (fA) = P (W A) n CX(n)p

where C (TO denotes the set of all functions which along with their

first t derivatives are continuous on I P. i(S; A) is then the
p

set of all functions in Pp(Q;A) which along with their first k

derivatives are continuous across the common boundaries of adjacent simplices

F 4



of &. It is shown in [I1 that if 0 < I <= then the analogous

statement holds for Z .( iA A) and Z( C ;A).

Recalling that 12 is the union of n-simplices fl., let rk, k=l,

... , K, oenote the faces of Q, i.e., the (n-l)-simplices whose union is the

boundary of U. Fix s > 0 and let * be the largest integer strictly

less than - . For each k=l, ..., K, let Dk be a subset of {0, 1,

k., }. Denoting by D the family {Dk; 1 < k < K, define

zS(Q;A, ) = {u E ZS(Q; ) : for k=1, ... , K,

.-j=0 on r for each m Lck 

and

settn;g , .D) fu I PC12;A) for k=l, ... , K,

A_= 0 on r k for each m Dk

% 8mu . th

wheorem -0= u and, for m > , 1 hs the m order erivative of u with

respect to n, the outward pointing unit vector normal to the bouncary of a

Letting Hs( ) be the usual Sobolev space of order s on f2 ando

setting Zl(n;&,n)gi zS(;), the main result of [11] may nowi!'I be stated:

Theorem 2.1 Let s and s' be such that s >2s' >0 and s, 2s' + an

52

integer. Let b* denote the largest integer strictly less than s 2 n I

e (;&D for some integer L satisfying s' - 21 < i < k* and for some D, then for

each non-negative integer p there exists 90 C Pt (42;&,D) such that for arbitrarily
P

small c > 0,

(2.1) Ilu - 9 P11 < Cp - s + 2s' + c-Il,, z s f 6

HS' ( ) -- ( ;5



where C = C(s, s', c) is independent of u and p. Moreover, if u

e Zs (U;A,D) then for any integer L > s' - 3/2 and for any

non-negative integer p there exists Pp E P D(;A,D) such that
p

(2.1) holds.

For any real s > 0, define D = {DkI as above and let

HS(Q;D) = {u £ HS(Q) : for k=l, ... , K,

m = 0 on k for each m cE

The following (ll,Theorem 3.4] is a consequence of Theorem 2.1:

Theorem 2.2 Let s and s' be real numbers such that s > s' > 0. If

u £ H (S;D), then for each non-negative integer p and each integer k >

s' - 3/2 there exists (p E Pp(1;A,D) such that for
p

arbitrarily small c > O,

lU - Ip s,(2) _Cp- s + s' + C'

where C = C(s,s',e) is independent of u and p.

Remarks:

I. Although boundary conditions were not explicitly included in [11, Theorems

3.3 and 3.4), their proofs are easily modified as indicated in [il to obtain

Theorems 2.1 and 2.2.

2. Theorem 2.2 was previously obtained in [6] for the case s'=l and

HS(Q-9D) = HS(Q) Cn I(), s > 1.

6



3. The Approximation of Solutions of Elliptic Boundary-Value Problems in

Polygonal Domains

2
Let It denote a polygonal domain in R with bounoary r. Then r is

the union of a finite number of line segments r,, 1 < _< L, which one

may assume to be labelled in consecutive order following the positive

orientation of r. Assume also that the set {i, 2, ..., L} is

partitioned into two subsets 0 and N, and let r = U r and r = ' r

For each L, 1 < < L, let n denote the outward pointing unit normal

to r,, let 0 = !-if LDD, and let =0 if L&N.

Consider the following model problem. Given k a non-negative integer, f

(Q), and g. E F+l/2 (y) if 9,eN, find u such that

-Au+u=f in1

(3.1) u = 0 on rD

a = gt on r., LeN

1 1

Letting H1 (;D) = {u c H (14): u = 0 on rD}, (3.1) is

equivalent (see e.g. [13)) to the following variational problem: Find u c

HI (4D) such that

(3.2) f (+ +uv)dx- f g.,v dr: f vdx

for all v E Hc(Q;D)

It is known [13) that (3.2) admits a unique solution u.

The present objective is to determine the approximability of the solution

u in H'(11) by elements of PO(Q;A,D) where A is some triangulation of Q. In
p

7



order to use the results of the previous section, one must know the regularity

k k+2of u. Since f c H (11), it might be expected that u c H ).

However, it is well-established that this is not true, in general, oue to

possible singularities at the corners of f and at points of r where a

change of boundary condition occurs. Nevertheless, under certain conditions,

the solution u may be decomposed into the sum of a function in Hk+ 2 (2 ) and

functions which possess singular derivatives at the corners and points of

changing boundary conditions. In order to give a precise statement of this

result, for each L, 1 < . < L, let o denote the common endpoint of rk and

r+ 1 (or r L and r if 9-=L), and let w, 0 < w, < 27, denote the measure of the

interior angle of 14 at a It will be assumed that if w. = r then

either ZeD, k+l eN or else UdN, k+l eD (with the obvious modification for

£_=L); i.e., if we U then the boundary conditions in (3.1) change from

Dirichlet to Neumann or vice-versa at at. For each k, 1 < t < L, let (r,

e) denote polar coordinates based at o£ such that 6=O contains the

segment r, 1 . Finally, for each L, 1 < k < L, and each integer m, let

-9* - 6+ m I

The following is a consequence of [13]:

k )<+1/2Lemma 3.1 Let k be a non-negative integer, let f c H (il), and let a£ .I /:; . - a - (k+l)w

(r ) if U.. if is not an integer for any k, then there

cHk+2 W n ubrexists w c H+( ) and numbers such that

m .

u =w + c. Cmr , cos(X9,me ,.l)Xp(r£,e,)
0 <X_,im 4<+l

_, L, Im an integer

. .%

8



. -1m

+ £ C ,mr { n ros( ,mG-,+kl)-esin(Xe,m}X (l)}x(riOi)0 <X, L'm 4+l L Mt6~

XLm = an integer

is the unique solution of (3.1), where the Xt are smooth functions equal

to unity near a and zero away from a X. Moreover,

(3.4) wl k + Z I < C (Ofllk (  + Z gi k1k+l/2
H k+2 () H () eN (r )

The importance of Lemma 3.1 lies in the fact that the piecewise

polynomial approximability of u may now be determined by investigating the

approximability of each term in the right-hand sioe of (3.3) separately (with

a slight modification) using the results of Section 2. The following lemma is

required:

Lemma 3.2 Let L be such that 1 < X < L, let n. c C(F) be such

that supp nr t is contained in a neighborhood of or, and let Ci'

2 C lIO, w.3). If V is any non-negative real number and if

j v(r,,e ) = r1,(Rn r . +I

then v Z21i+2-( ;A) for arbitrarily small c > 0.

Pf: Let (r,e) denote a polar coordinate system centered at the point (1,i);

in particular, let r = [(x1-l)2 +(x2-1)2]/2 ano let e be the angle

measured from the semi-axis {x: xI < 1, x2 = 1). It suffices to

snow that if 4I' 2 c C([U' 9I), then the function

v(r,e) = r (n r Ye) + (e)) , (r, 6) c I-'

, ,.9

.es. V %* . i



belongs to Z2i+2-E(1 2 ) for arbitrarily small c > 0.

To this end, let X E Ca([O, = )) be such that

0 for 0 < t < 1/2

I for I < t < -

ano for each 6 > 0 let x 6 (t) = x(t). Setting v 6 = vx 6 (r), it follows by

Lelbniz' rule that for each integer k > 2p + 2 and for i = 1,2,

v 2 k 2k v 2 ak-mx6 2

(I _ ox2)kdx <_ v x2

~~~~m02 ax 1MOL xmi-

k z 1 6-2k+2m 6 r2p-2m+k+ l-  r + r2p-k+l -dr
S m=O f/2 f6/2

< C 2p-k+2-c

Furthermore, since
1v 11 2 <  C IIl

I 6 L(1 2 L 2

one obtains tnat for any integer k > 2p + 2,

k I £
(3.6) IN 6Zk(,2 <C 6 1 -' 2 2

Now,

IV - v61_
2 dx IV(' - X6)- 2 dx

< C 4?+V2-ci22

i.e.,

(3.7) l1V- v 6 1 2 <C 6
L2 (1)

S. .. ... . . -10



For each t > 0, let

K(v,t) = inf (11v 111 2 + t llv2 lzkl 2)V=V + v2  I( ) 2 )

If 0 < t < 1, then by choosing 6 = t2/k it follows from (3.6) anO

(3.7) that for k > 2p + 2,
K(v,t) < 1Iv - V6 11 2 + t Iv 61lzk(2

SL 2 (I) )(

2 p+2- £

< C t k

Furthermore, for t > 1,

,'_'-"K(v,t) < (vll 2

Hence, for arbitrarily small c > o,

I -_22+2-cc -_(t k K(v,t)) 2 dt < t i

W _ 21j+2-c -

+ 2 k dt <

and the result follows from [11, Theorem 2.1]. 
k

Theorem 3.1 Let k be a non-negative integer, let f c Hk (), let g, c hk+l/2

and assum + i -- (k+l)w£

(r) if "eN, and assume that I is not an integer for any L.

If u is the solution of (3.1) then for each non-negative integer p there exists

4p C PO(ii;A,D) such that
P p

(3.8) 1 -i 1H (a) < Cp min{2X1 , , ... , 2 L ,l' k+l) + £(.) I-plHl() <_p(Hfli()

+ Z IIg1 1/2 )
LeN H/ (r.)

11



for arbitrarily small £ >0 , where C = C(E,k) is independent of u and p.

Pf: Let I , m' CI,m' w, and Xt oe as in Lemma 3.1. For each L

and} m such that 0 < )L,m < k+1 and LIm A an integer, let

zD,m (rLO ) = r ' m cos(x, met - Bti) Xj (rtet)

For each L and m such that 0 < m < k+l and a m = an integer,

oefine

W-)m+1 W tsin e XLMif w£ A

,(@£) W- (- m+ l x (sin O,) L' m if w = 7, L+l c N, and UD

(-W)m+l I (-cos L) x ' m if W = n, tUD, and £L+ eN

ano set

Z (r' r x m (An r " Cos() L , m  1 I sin(X e' - I

+ i,m(et X xt,(r., 6,)

Finally, let

L m
x m = an integer

Then

(3.9) + - < (lc ~
+ t m

__ O~a ,m <+l cam Ztm

2X ,+2-c

Moreover ' c Hk+2() r H1 (4;D) and by Lemma 3.2, zim E Z0  ,m (ia;A,D) for
LM 0

arbitrarily small £ > 0. Applying Theorem 2.2 to W ano Theorem 2.1 to the

-Z ,it follows that for each non-negative integer p there exists *,

C P0 (u;,,D) and ,(m) C PO( ;A,D), 0 < X k + 1, such that
p p

12



(3.10) 11w -1 I cpk--+c (2' and
P H' (Q) H (a)

(im)- 2 1- m€

(3.11) 11zj M - H 1m))l < Cp 2,m IZ2m IIM+2-(c A) 1 0 < XL' m < k+l

where C is independent of p. Setting

(3.12) W + (, I
P O<XL, m<+l m

(3.8) follows from (3.9) through (3.12) together with (3.4) and the triangle

inequality.

Remarks 1. Theorem 3.1 for the case r = r, rN = 0 is proven

in [6, Theorem 4.3]. The techniques employed there, however, do not use

weighted spaces to obtain the result; instead, the singular functions are

approximated directly.

2. Theorem 3.1 shows the doubled order of convergence obtained by using the

p-version of the finite element method instead of the h-version with

quasi-uniform refinement. Letting N denote the dimension of P0 (S;AD)
p

and letting h denote the maximum diameter of any triangle in A, it holds that

h -2  for the h-version (quasi-uniform refinement),
(3.13) N

p2 for the p-version.

It can be shown (see e.g. [4)) that functions of the form (3.5) belong to the

space Hs(&) iff I < S < X + 1. Letting

i = mL m

0 <XI,m< k+l

and assuming that k is large (which it usually is in practice), it follows

from the standarO h-version approximation theory (2,10] that the approximation

13

<7a~m . .... .



error in 1(H ) for the h-version is of order hl  V/ N /2. As for

the p-version, Theorem 3.1 together with (3.13) yield an approximation error

of oroer p-2p+c £ N-P+¢ for arbitrarily small c > 0.

Results such as Theorem 3.1 may similarly be obtained for elliptic

operators other than that of (3.1) provided that results such as Lemma 3.1 are

available for such operators. Consider for example the biharmonic problem:

given f c Hk(a), k >0, find u such that

42u = f inR
(3.14)

u= o'u/an = 0 on r.

Letting H2 (Q;D) = { u £ H2 (fl) : u = au/an = 0 on r), one

seeks to approximate u in H2( ) by elements of PI( Q;A,D) =
p

H2 (a;)n p p(91;A). In [18) it is shown that the solution u of

(3.14) may be written as

u = w + z r mQ,m(rj)xL(rk,6y)
0 <Re XLm < c(k)

where

(i) w H (k+4(fD),

(ii) the Xtm are the solutions of the nonlinear equation

sin 2(X m l) mw - LIM - 1)2sin 2 = 0,

14



(iii) the functions Q£ ,m are of the form

P., M~r pnm~j inA,j r

, -- cm,j(em, rj 6,t

for some smooth functions cm *, non-negative integers n~~,and real

numbers am,j > 0, and

(iv) x, is a smooth cutoff function equal to unity near a and

vanishing away from 0y

Then the following may be obtained in a manner similar to Theorem 3.1:

Theorem 3.2 Let f e Hk(Q) for some non-negative integer k and let

u be the solution of (3.14). Then for each non-negative integer p there

exists *p c P1 (Q;AD) such that

II U - *p 11 H2 (j) I Cp- min( 2 min ReX9,m - 2, k + 21 + £ Ilfil Hk(R)

1, m , ,k+2 : 1 1H~j

for arbitrarily small e > 0, where C = C(c,k) is independent of u

and p.

4. The Approximation of Solutions of Elliptic Boundary-Value Problems in

Polyhedral Domains
£3

Let 1 denote a polyhedral domain in R) with boundary r and

consider the following model problem: Given f in Co(N), find u such that

-Au + u=f in 2,
(4.1)

u=0 onr.

Letting

15
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H( ;MD) = {u cHI(Q): u 0 on r)

it is well-known that (4.1) admits a unique variational solution u c

HI(Q;O). In order to determine the approximability of u in H1 (W) by

elements of PO(Q;AD) for some triangulation 6 of fl, the
p

regularity of u must again be established. By classical elliptic regularity

theory [1,19), the solution u of (4.1) is infinitely differentiable in the

interior of Q and up to the smooth faces of r. However, in analogy with

the previous two-dimensional case, u will, in general, possess singular

oerivatives at the corners and edges of Q

Consider first the behavior of u near an edge of Q. Let y denote an

open segment such that j is contained in the interior of some edge of fi.

Letting x = (xl, x2, x) denote Cartesian coordinates in R3 , assume

without loss of generality that y is contained in the positive x3-axis.

Let w denote the measure of the interior dihedral angle formed by the two

faces r I and r2 of flwhich intersect along y. Let (r, 9, x3)

denote cylindrical coordinates about the x -axis such that r = (x2 +
x2)/2 and such that qf = 0 (resp. f = w) contains r (resp.

r2). Denote by G an open subset of R2 such that G x y C Q and C x

7 neither contains any corners of Q nor meets any edges of 41 except for

the edge containing y. For each integer m > 0 and each integer n > 0,

let

MR

(4.2) Zm,n(r, p) = rW sin y)

zm mIl

if' - is not an integer, and letw

Mn+ 2n m

(4.3) Zm,n (r,cp) = r -[2 n r siln(P) + mo s k--l)

if E is an integer. The following result is contained in [16]:

16
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Lemma 4.1 Let f belong to Ca(l). Then for any positive integer k

there exists h c C0 (', M 2 (G)) and Cm, n  C (-) such

that

(4.4) u= Cm,n Zm,n + h

0 <- + 2n <k+l

inGx y.

Remark If one were only to assume that f E Hk (), Lemma 4.1 still holds

except that in this case, one may only conclude that2 h E L (y, H k+2(G)) and

k+l- m' -2n 2

c,£ H W (y) (see [16) and the references contained therein).Cm,n

The assumption that f c C (Z), which usually holds in practice, has

been made in order to help simplify the presentation.

Together with Lemma 4.1, the following enables one to apply the

approximation results of Section 2 to the solution u of (4.1) in a

neighborhood of the edge y.

W 
0-

Lemma 4.2 Let yL' 2 C (O, w]), let n c C (U) be

such that supp 'n c G x y, and let c c C(j). Let v be a function

on U such that, in G x y,

C0 (X;Y) is the space of all infinitely differentiable functions on X

whose values lie in Y.

2 L2 (X;Y) is the space of all functions h on X with values in Y such that

IX IIh(x)l dx < 0.

17
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v(r,9,x3) = c(x.)r (M r jjp) +

for some non-negative real number U. Then vn c + ;AD) for

arbitrarily small e > 0.

Pf: Since v is smooth in the variable x3 , the result follows from Lemma 3.2.

Consider next the behavior of the solution u of (4.1) in a neighborhood of a

corner of QI, which may be taken to be the origin without loss of generality. Let

y denote an edge of f which has the origin as an endpoint; again assume that y

is contained in the positive x3-axis and that w is the measure of the interior

dihedral angle of i at y. Let K denote the intersection of 1 and a solid

circular cone whose vertex is the origin, whose axis contains y, and whose

half-angle is sufficiently small that K does not meet any of the edges of Q which

have the origin as an endpoint except for the edge containing y. Finally, let Ko

denote the intersection of K and a small sphere of radius p0 about the origin.

The present goal is to understand the behavior of u in K0 .

To this end, let G denote the section of the unit sphere intersected by tne

infinitely extended cone coinciding with a in a neighborhooo of the origin, and let

GY oenote the intersection of K and the unit sphere. Denote by 0 < XI

<... the eigenvalues of the Laplace-Beltrami operator on G with homogeneous

Dirichlet boundary data on aG. Let (p,e,p) be the usual spherical coordinate

system in R . Applying the previous two-dimensional results to the

Laplace-Beltrami operator on G, let Zmn (e,c) denote the singular functions

analogous to (4.2), (4.3) where the singularity occurs at the corner 6=0 of G. The

following is proved in [16):

18
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Lemma 4.3 Let f oelong to C (2) and let u oe the solution of (4.1).

Then for any integers k and k' satisfying 0 < k' < k, there exist numbers

Cm,n,i, di and functions fm,n' gi, h such that, in Ko,

1
u(p,O,q) = mn [ Cmn P 4

m+2n<+1'

(4.5)

+ fmn(Pmn(ecP) + d. d i p gi(e,) + h(6,y)

k-++

where gi c H+ 2 (G ) and for arbitrarily small c > 0,

p- + c c L2(0,) ,0 < j < k'
3pj m,n 2

-k + .j + . -k +2
2 -- h L (0, H k-k'+2(G ), 0 < < k'

The following lemma, together with Lemma 4.3, will allow the application

of the approximation results of Section 2 to the solution u of (4.1) in K0

Lemma 4.4 Let £I c C(E) be such that supp rI c G ano let

C2 c CD ([O,-)) be such that supp rn c {p: 0 < p< po1.

(i) If v is a function on f such that, in K

-VI 1 IJ + 2..91
(4.6) 11 si 6oa' c L (C(0,w L (G))

ap 3V3 22

0 < 1 8+ 8+ 83 - V

for some positive real numbers vI, p2 and for some positive integer v, then
2 min(pi,v 2 ) + 2-c

V lTri2 C Z0  (I;A,D) for arbitrarily small c > 0.

(ii) If v is a function on Q such that, in Ko,

19
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P v p_,___ c L2((0,); L2(G))

o _< 1 + 5 + a3 -<
for some positive real U and some positive integer v, then vrr c 2 j2-

(irD) for arbitrarily small c > 0.

Pf: Assume that the Cartesian coordinate system (x,, x2, x3 ) has been

transformed by an affine mapping in such a way that p now represents the

distance to the point (1,1,1) and that e is the angle measured from the

semi-axis {x: x1 = x2 = 1, x3 < 11. To prove (i), it suffices to

show that a function v in 13 satisfying (4.6) (with the new definition of

(p,O,q) and corresponding redefinition of G) belongs to

Zm (PiP 2) + 2- (I) for arbitrarily small e > 0.

To this end, let X e Co([O, =)) be such that

0 for 0 < t < 1/2
X(t) I for 1 < t < -

and for each 6 >0 let X6(t) = x( )- Set v6 =

v X6(p) X6(p sin 0). Then, for i = 1, 2, 3,

k. _< x6() ________

'vuI~ 6___ a "v a'X 6 P 0' X6 (P sin 6)

i aaKa

k l a .01v -k
'C 6 -

and

ev2 k 2 2kr al 2f 6 2 k2 k I. I-v, (lx.d
( -- I lx ) dx: < C Z 6 k d

L xi  1=0 a 12<p<6 I

2Ox

20



*k 2c-2k fa< 2 -2S 2-2 '3+k+2
< C Z 6 zp sine6 dpd~dcp

k 2ai-2k 2________212+k-

<.C Z 6 z fi 6 2442 .1222

a, c] <p<6 oaa,

(47)p21j 1+k-2a.3 +2 sn2P42-2B2 +2 6 8i dpded~p

<~ ~ ~ ~ sin zpsi

:af pv ,sin3
a1=0 1$1=( 1 2 <p<6 ~a

*(p sin W-)a p 2,2sin 2p2+e sin 8 Cpa9oq

k 2a1-k-2c 1+2 min(pl,j42)+2
<C L 6

Cii=O

2 minc14,IQ+2
< C 6

* 'V Moreover,

f lV - 6 1 dx L IV (1 - X6(P)X6(P sin e))l 2 dx
3 12

Sc-f 1V1 2 dx
p sin 8<6

(4.8) < f V1 2 P-1 i-4- 214j.+2 sn2p2+2 sin 6opd~dp

12  -214 -2vi+2 2 min(vp, )+2

8<6IV p sin 8 (p sine6) sinGe dpd~dq)

For t > 0, define

K(v, t) = inf O11 + t vIN 11
VVI V 1L (3) 2 Z k(1 3

21



For 0 < t < 1 let v1 = v - v6 and v2 : v6. Then, by (4.7) and (4.8),

Smin(ul,u2)+l -k/2 + min(pl, 12)+l

K(v, t) <C(6 + t 6

Choosing 6 = t 2 /k , it follows that

2 min(P,, i)+2
k

K(v, t) _<C t 0 < <t .

For 1 < t < , take v = v and v 0 to obtain

K(v, t) < C IIvIl23 1 <t <

2

Hence,

4min (pl,p2)+4
(t- K(v, t))2 t < -20 + k -i dt

0 Cf,
+ C I1II t 2  dt <

2(1 ) .I'

pod2min (I,u2)+2
provided that 0 < 6 < k . By the definition of real interpolation

via the K-method together with [11, inrorem 2.1], it follows that for

arbitrarily small c > 0,

v e (L 2 (1), z ( 2min (P2)+2-r

k ,2

-'2min (),, 2)+2- e

which completes the proof of i).

The proof of (ii) is essentially the same as that of part (i) except that

one instead sets v6 = vx6 (p).

22
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Having established the regularity of the solution u of (4.1) near the

eages and corners of £s, the piecewise polynomial approximability of u in

Hl (W) can now be determined. Let o,, 1 < k < L, oenote the corners

of i& ano let 0 < X < S ... denote the eigenvalues of the

Laplace-Beltrami operator on G with homogeneous Dirichlet boundary

conditions on aG where G is the portion of the unit sphere

subtended by the infinite cone which coincides with 0 in a neighborhood of

0 .. Let y-., 1 <j <3, denote the edges of il and let wj

denote the measure of the interior dihedral angle of 2 at y" The

following is the main result of this section.

Theorem 4.1 Let f belong to C (K). If u is the solution of (4.1) then

for each non-negative integer p there exists p P0 (;A,D)
p p'

such that

HU - 1 ~ < C(u, 0 5 2p + e

for arbitrarily small c > 0 where

(4.9) j= min +T 11

and C(u, c) is independent of p.

Pf: By employing an appropriate partition of unity, the approximability of u

in Q may be determined by separately considering the approximability of u

near the edges of S2, near the corners of 2, ana in the interior of 2.

Since u is infinitely differentiable in the interior of Q, Theorem 2.2 may

be applied with any value of s yielding an arbitrarily high degree of

approximation there. Near an edge yj, Lemma 4.2 and Theorem 2.2 (with an

arbitrarily large value of s) may be applied to the terms z m and h of

232 -° .** N * * * * * * ~ * * * . a . 4 *
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(4.4) respectively; this together with Theorem 2.1 yields an approximation
2n.

degree of - c near y.. Near a corner a, and an edge y. with a. as an

endpoint, one applies Lemma 4.4 to each term of (4.5) with k' = [j], k

arbitrarily large, and ., p2, 1, v chosen as follows:

1~ I 1
1. For the term p 2 tL +e 1 1" £ Z~ n take i= - i +  i

m ~ 4 1, L 4'

2 = + 2n, and v arbitrary in (i);wj mr

2. For the term f ,n take I = k, p2 + 2n, and v = k' in (i);

- Xit + 1 - 1
3. For the term P gi' take p = - + X +

and v = k + 2 in (ii);

4. For the term h, take p = k and v = k' in (ii).

Theorem 2.1 then yields an approximation degree of 2-min - + -

for u near and y.. The proof is completed by adding together the

various approximating piecewise polynomials obtained in this manner and

applying the triangle inequality.

In the two-dimensional result Theorem 3.1, the degree of approximation is

dependent solely upon the measures wj of the interior angles at the

corners of the domain and upon the boundary conditions; since these are always

known, the approximability of the solution of (3.1) is readily computed in all

cases. While the effect of singularities along the edges of a polygonal

domain is similarly expressed in terms of the dihedral angle measures

in Theorem 4.1, the presence of the Laplace-Beltrami eigenvalues in (4.9)

makes the determination of the approximation degree more aifficult in the

.J4P three-imensional case since the relationship between these eigenvalues and

known quantities in the problem is not clear. The determination of the

smallest (or fundamental) eigenvalue X1 of the Laplace-Beltrami operator

on various domains has been considered by a number of authors (see e.g. (81,

24
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[20],[27]). For some configurations, X~ can be obtained analytically,

however, in general one must resort to numerical techniques. Figure 4.1 below

depicts a solid 12 containing a notch and rectangular crack. Assuming that

(4.1) is posed on U, Table 4.1 lists the values of 11 corresponding to

each of the corners of 2 together with the method used to compute X 1 and

the quantity + 1~A Considering Table 4.1 together

with (4.9), it is interesting to note that the corners of type A, B, or C, the

degree of approximation is not affected by the "corner singularities" since

these are weaker than the singularities along the edges converging at such

corners. On the other hand, for corners of type D or E, the corner

singularities are dominant.

25



A A

C -

A A

|,• !Figure 4.1: Solid with notch and rectangular crack.

DD 1B

Corner 1 Method of Computing X1  _ 1 .+ l+ 4

A 12.000 Analytical [27) 3.000
B 1.667 Analytical [8) 0.884

C 1. 500 Analytical [ 8) 0.823

4i D 0.453 Numerical [8) 0.338

- E 0. 396 Numerical [ 27) 0 .304

Figure 4.Table 4 .
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5. Numerical Results
The relevance of any asymptotic error analysis such as the one presented

here depends of course on the ability of the underlying method to achieve the

predictea asymptotic order within practical computational limits. Since these

issues are difficult to resolve analytically, one must rely on numerical

experiments to determine whether it is possible to see the predicted

asymptotic behavior of the error without using an unreasonaole number of

degrees of freedom. Such experiments also provide useful information about

the level of accuracy that can be expected from a given amount of

computational effort. In this section, the p-version of the finite element

- ~method is applied to two model problems from two-dimensional linear elasticity

using the research program COMET-X developed at the Center for Computational

Mechanics at Washington University in St. Louis [7]. While the computations

*do agree with the asymptotic orders predicted by the above approximation

theory, the main conclusion to be drawn from these results is that for

problems of practical interest, the p-version does in fact enter the

asymptotic range for low values of p. Moreover, it is seen that the order of

convergence is completely determined by point singularities in the solutions,

and that, unlike the h-version, the point at which the p-version enters the

asymptotic range is virtually unaffected by the Poisson ratio.

In order to link the following computations with the approximation theory

of the previous sections, a number of preliminary remarks must be made.

i) The approximation results of [11) were developeo only for scalar

problems. However, there are no aifficulties in generalizing these

results to the approximation of vector-valued functions (such as the

two-dimensional displacement fields treated below) by vectors of

piecewise polynomials in the

27. 27
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Sobolev product spaces 1-s = 11 HS .

(ii) Along with a table of displacements and stresses, COMET-X calculates

the strain energy

J(u) = 1/2 fa [u] B[Du ]d2

of the computed solution !p where D is a differential operator

and B is an elasticity matrix which depends on the elasticity

modulus E, the Poisson ratio v, and the type of two-dimensional

problem being considered, i.e. either plane strain or plane stress

(for a more detailed description of the matrices D and B, the

reader is referred to [28)). In terms of J, one defines the energy

norm

JJ-IJ= 3(-)1/2

which is equivalent to the usual Hi = H1 X HI Sobolev norm on

the space of admissible displacements with rigid body motions

factored out. Since the error in the energy norm corresponds to a

least squares error in the stresses, it is generally desired in

engineering applications to achieve 5 to 10 percent relative

error in this norm. This, of course, corresponds to a .25 to 1

percent relative error in energy.

(iii) In two dimensions, (p+l)(p+2)/2 degrees of freedom are required to

uniquely specify a polynomial of degree p. Since the p-version

assumes a fixed mesh, it follows that the dimension N of the finite

element subspaces grows asymptotically like p2 as p =. This

implies that if the theory of the previous sections predicts an error

28



estimate of the form

Ieu-M, IIl . Cp- Q I >01

where u is the exact solution, then the corresponding estimate of

the error in energy with respect to the number of degrees of freedom

is given by

J(u - u p) < CN(p) - ('.

Due to a well-known orthogonality property of the error u -

this is the same as

*(5.1) I 3(u) - 3(_$) I < CN(p) - ( .

Consider an edge-cracked square panel as depicted in Figure 5.1. In

order to have an exact energy with which to compare energies computed by

COMET-X, let it be assumed that the tractions oil i = 1, . . .,5 are

such that if u is the restriction to the panel of the exact solution (as

constructed e.g. in [21,sec. 120)) for an infinite cracked panel, then u

solves the finite problem of Figure 5.1. Near the crack tip, u is of the

form rl/2.(e) where (r,e) are polar coordinates at the tip of the

crack and 0 is a smooth vector function. Using the formula for u , one

computes 3(u) = 42.16.

29
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Figure 5.1: An edge-cracked panel.
I Elasticity modulus E = 1.0, Poisson

ratio v = 0.3, Traction a as
specified in the text, Plane strain.
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Applying the p-version to this problem, one subdivides the panel in some

convenient manner. Two possible meshes are shown in Figure 5.2. It should be

noted here that although the approximation theory presented in [11) has

assumed triangular subdivisions this is not essential, and the results

presented are equally valid for quadrilateral subdivisions such as in Figure

5.2. By the results of section 3, one obtains that, neglecting c, for each

polynomial degree p, the p-version finite element solution uY satisfies

Iu -u 11ll < Cpa

where C is independent of p. Hence the error in energy is expected to

decrease linearly with respect to the number of degrees of freedom.

Figure 5.3 shows the COMET-X results for this problem. One observes that

the predicted linear convergence is achieved and that the asymptotic range is

entered for p as low as 4 for either mesh #1 or mesh #2. This entry into

the asymptotic range therefore occurs when the relative energy norm error is

about 27 percent and 14 percent for mesh #1 and mesh #2, respectively.

The superiority of mesh #2 over mesh #1 is clearly due to the fact that, given

a fixed number of degrees of freedom, mesh #2 allows more degrees of freedom

to participate in the resolution of the singularity at the crack tip than does

mesh #1. Note that for mesh #2 a relative error in energy of less than one

percent, i.e. a relative energy norm error of less than 10 percent, is

achieved with p = 6, which corresponds to 482 degrees of freedom.

Furthermore, if the error Gurve for mesh #2 is linearly extended, one finds

that a 5 percent relative energy norm error is achievable by using less

than 2,000 degrees of freedom. A problem of this size could be handled by a

large mainframe.
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0.1-
10 100 1000

Number of degrees of freedom

Figure 5.3: COMET-X results for
the edge-cracked panel of Figure 5.1.

* Consider next the edge-cracked square panel in Figure 5.4 where the lower

side of the crack is held fixed and part of the upper edge of the panel is

subjected to a uniform traction as shown. Although there does not exist an

analytical solution to this problem, it can be rigorously demonstrated that

near the crack tip, the displacement field u is of the form ra_(e)

where (r,e) are polar coordinates based at the crack tip, 4 is a

smooth vector function, and a = 1/4. Milder singularities of a similar

form exist at the other corners of the panel. By the approximation theory of

section 3, it holds that, neglecting c, for each polynomial degree p, the

p-version finite element solution Yp satisfies

* -32



- - - "- - Cp.~-1/2

u uu l C

where C is independent of p. A convergence order of 1/2 with respect to

81 .the number of degrees of freedom is therefore expected.

Since the exact energy is unknown for this problem, some other means were

required to obtain a reasonable estimate of this value. For this purpose, the

self-adaptive h-version code FEARS (Finite Element Adaptive Research Solver)

developed at the University of Maryland [5) was used. Since FEARS provides an

aposteriori estimate of the error which may be employed to obtain a prediction

of the exact energy, this procedure was used to obtain the values 3(u) = 1.57

for v= .3 and J(u) = 1.23 for v= .49.

Figure 5.4: An edge-cracked panel

with constrained crack. Elasticity modulus
E = 1.0, Poisson ratio v = 0.3 or 0.49,

Traction a = I., Plane strain.
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Figure 5.5 contains the COMET-X and FEARS results for this problem using

Poisson ratios of v = .3 and v = .49. The COMET-X triangulation of the

panel is shown in the inset. Since FEARS aOaptively selected a number of

meshes to obtain the results of Figure 5.5, these are not shown.

One observes that the COMET-X results are quite similar for v = .3

and v = .49. As for FEARS, the results for v = .49 are somewhat worse

than those for v = .3, although the fact that an asymptotic rate is even

observed is rather significant since non-adaptive h-version codes are known to

perform poorly for values of v near the incompressibility limit 1/2. The

invariance of the p-version with respect to the Poisson ratio v has been

previously observed by other investigators and is rigorously analyzed in [263.

The convergence order for COMET-X is 1/2, as predicted, whereas the

convergence order for FEARS is 1, which is expected due to the fact that the

adaptive procedure eliminates the effect of the singularity on the order of

convergence leaving only a dependence on the polynomial degree (=I). For v

= .3, the COMET-X error is less than that of FEARS up to about 350 degrees

of freedom, and for v = .49 the COMET-X error is less than the FEARS error

up to about 2500 degrees of freedom. These cross-over points correspond to

a relative energy error of about 9.5 percent and 3.7 percent,

respectively. Thus, in very low accuracy ranges, the COMET-X results are

somewhat better especially for the Poisson ratio v = .49. On the other

hand, in the higher accuracy ranges FEARS achieves a lower error than

COMET-X. In fact, by linearly extending the error curves of Figure 5.4, one

easily checks that in order to obtain results which have a relative error of

10 percent in the energy norm, if v = .3 then COMET-X would require

about 35,000 degrees of freedom as opposed to 3,000 for FEARS. If v =

.49 then COMET-X would require about 25,000 degrees of freedom to about
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Figure 5.5: COMET-X and FEARS results
for the edge-cracked panel of Figure 5.4.

7,000 for FEARS. Both of the latter numbers of degrees of freedom for

COMET-X must be regarded as being outside practical computational limits.

In summary, although the above numerical results are in no way

exhaustive, they do suggest the following:

(i) The order of convergence of the p-version agrees with tnat predicted by

the approximation theory. Moreover, this order of convergence is completely

controlled by a principal singularity occurring at a point(s) on the boundary.
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(ii) The asymptotic range is achieved for low values of p. Furthermore, the

asymptotic range has generally been entered by the time the relative error in

the energy norm has reached 10 to 30 percent.

(iii) The p-version is not sensitive to changes in the Poisson ratio v,

even when v is close to the incompressibility limit.

(iv) If' the dominant singularity is of the form roa with a > 1/2

then it is possible to achieve a relative error in the energy norm of 5

percent without exceeding practical computational limits. If, however, (X

< 1/2, say e.g. a = 1/4 as in the second example, then it may not be

possible to obtain a relative energy norm error of less than 20 percent

without using an excessive number of degrees of freedom. For problems with

such strong singularities, it seems clear that an adaptive p-version or a

combination of h- and p-versions [3] will be necessary to obtain the level

of accuracy required for many problems.

Of course, the above considerations have avoided other aspects which

figure significantly in the actual cost of finite element analysis. These

include the sparsity of the resulting matrices, the complexity of' the input

data, issues of data structure and data management, etc. Questions such as

these are discussed in [6] and [22-24].
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The Laboratory for Numerical Analysis is an integral part of the
Institute for Physical Science and Technology of the University of
Maryland, under the general administration cf the Directrr, instituLn
for Physical Science and Technology. it has the following gcals:

To.conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with
emphasis on the numerical treatment of linear and nonlinear
differential equations and problems in linear and nonlinear algebra.

" To help bridge gaps between computational directions in engineering,
physics, etc. and those in the mathematical co.-minity.

To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

* To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collabiration with government
agencies such as the National Bureau of Standards.

• To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign
governments or exchange agencies (Fulbright, etc.).

Further information may be obtained from Professor 1. Babugka, Chairman,
iab~ratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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